메뉴 바로가기 검색 및 카테고리 바로가기 본문 바로가기

만들면서 배우는 생성 AI

트랜스포머부터 GPT, DALL.E 2 , 스테이블 디퓨전, 플라밍고까지

한빛미디어

번역서

판매중

1 2 3 4 5
4.7점 (37명)
좋아요 : 111

책소개

진화와 혁신의 경계를 넘는 생성 AI 완벽 가이드 

 

이 책은 딥러닝 기초부터 최신 생성 AI 모델까지 설명합니다. 텐서플로와 케라스를 사용해 변이형 오토인코더(VAE), 생성적 적대 신경망(GAN), 트랜스포머, 노멀라이징 플로 모델, 에너지 기반 모델, 잡음 제거 확산 모델 등 인상적인 생성 딥러닝 모델을 만드는 법을 다룹니다. 다양한 생성 AI 활용법을 배워 모델을 효율적으로 학습시키고 창의적인 생성 모델을 만들어보세요.

 

 

상세이미지700_만들면서 배우는 생성 AI.jpg

저자소개

데이비드 포스터 저자

데이비드 포스터

크리에이티브 AI 애플리케이션을 전문으로 다루는 데이터 과학자이자 기업가, 교육자. ADSP의 공동 창립자이며 조직이 데이터와 AI의 혁신적 힘을 활용하도록 영감을 주고 역량을 강화하는 일을 합니다. 영국의 케임브리지 대학교 트리니티 칼리지에서 수학 석사 학위를, 워릭 대학교에서 운영 연구 석사 학위를 받았습니다. 머신러닝 연구소의 교수진으로 실용적인 AI 애플리케이션과 실전 문제 해결에 중점을 두고 있습니다. AI 알고리즘의 투명성과 해석 가능성을 높이는 데 관심이 있으며, 의료 분야에서 설명 가능한 머신러닝에 관한 논문을 발표했습니다.

 

 

박해선 역자

박해선

기계공학을 전공했으나 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 했다. 지금은 Microsoft AI MVP와 Google AIGED로 활동하고 있고, 머신러닝과 딥러닝에 관한 책을 집필하고 번역하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있다. <혼자 공부하는 데이터 분석 with 파이썬>(한빛미디어, 2023), <챗GPT로 대화하는 기술>(한빛미디어, 2023)을 집필했고, <핸즈온 머신러닝(3판)>(한빛미디어, 2023), <머신 러닝 교과서: 파이토치 편>(길벗, 2023)을 포함한 다수의 머신러닝 책을 우리말로 옮겼다.

 

 

목차

[PART 1 생성 딥러닝 소개]

 

CHAPTER 1 생성 모델링

_1.1 생성 모델링이란?

_1.2 첫 번째 생성 모델

_1.3 핵심 확률 이론

_1.4 생성 모델 분류

_1.5 생성 딥러닝 예제 코드

_1.6 요약

 

CHAPTER 2 딥러닝

_2.1 딥러닝용 데이터

_2.2 심층 신경망

_2.3 다층 퍼셉트론

_2.4 합성곱 신경망

_2.5 요약

 

[PART 2 6가지 생성 모델링 방식]


CHAPTER 3 변이형 오토인코더

_3.1 소개

_3.2 오토인코더

_3.3 변이형 오토인코더

_3.4 잠재 공간 탐색하기

_3.5 요약

 

CHAPTER 4 생성적 적대 신경망

_4.1 소개

_4.2 심층 합성곱 GAN(DCGAN)

_4.3 와서스테인 GAN-그레이디언트 페널티(WGAN-GP)

_4.4 조건부 GAN(CGAN)

_4.5 요약

 

CHAPTER 5 자기회귀 모델

_5.1 소개

_5.2 LSTM 네트워크 소개

_5.3 RNN 확장

_5.4 PixelCNN

_5.5 요약

 

CHAPTER 6 노멀라이징 플로 모델

_6.1 소개

_6.2 노멀라이징 플로

_6.3 RealNVP

_6.4 다른 노멀라이징 플로 모델

_6.5 요약

 

CHAPTER 7 에너지 기반 모델

_7.1 소개

_7.2 에너지 기반 모델

_7.3 요약

 

CHAPTER 8 확산 모델

_8.1 소개

_8.2 잡음 제거 확산 모델

_8.3 요약

 

[PART 3 생성 모델링의 응용 분야]


CHAPTER 9 트랜스포머

_9.1 소개

_9.2 GPT

_9.3 다른 트랜스포머

_9.4 요약

 

CHAPTER 10 고급 GAN

_10.1 소개

_10.2 ProGAN

_10.3 StyleGAN

_10.4 StyleGAN2

_10.5 그 외 중요한 GAN

_10.6 요약

 

CHAPTER 11 음악 생성

_11.1 소개

_11.2 음악 생성을 위한 트랜스포머

_11.3 MuseGAN

_11.4 요약

 

CHAPTER 12 월드 모델

_12.1 소개

_12.2 강화 학습

_12.3 월드 모델 개요

_12.4 랜덤한 롤아웃 데이터 수집

_12.5 VAE 훈련

_12.6 MDN-RNN 훈련 데이터 수집

_12.7 MDN-RNN 훈련

_12.8 컨트롤러 훈련

_12.9 꿈속에서 훈련하기

_12.10 요약

 

CHAPTER 13 멀티모달 모델

_13.1 소개

_13.2DALL.E 2 

_13.3 Imagen

_13.4 스테이블 디퓨전

_13.5 플라밍고

_13.6 요약

 

CHAPTER 14 결론

_14.1 생성 AI의 타임라인

_14.2 생성 AI의 현재 상태

_14.3 생성 AI의 미래

_14.4 마지막 의견

출판사리뷰

『미술관에 GAN 딥러닝 실전 프로젝트』 두 번째 이야기 

세상을 변화시킨 생성 AI의 과거와 현재, 미래까지

 

명쾌하고 설득력 있게 생성 AI를 설명하는 데이비드 포스터가 돌아왔습니다. 이 책의 초판인 『미술관에 GAN 딥러닝 실전 프로젝트』는 GAN을 집중적으로 설명했지만, 초판 출간 이후 생성 AI 분야가 크게 발전했습니다. 세상을 놀라게 한 생성 AI의 눈부신 발전을 담아내기 위해 2판을 새롭게 업데이트했습니다. 기존 내용을 최신 기술 정보로 수정하고, 트랜스포머 설명을 더 상세하게 보완하고, 멀티모달 모델 내용을 새롭게 추가했습니다. 업그레이드된 2판은 GAN에만 국한된 내용을 소개하지 않기에 『만들면서 배우는 생성 AI』라는 새로운 이름으로 찾아왔습니다.

 

본격적인 설명에 앞서 흥미를 자극하는 이야기와 실용적인 예시, 활용법까지 최신 기술로 무장한 이 책은 여러분을 생성 AI의 전문가로 업그레이드해줄 것입니다. 컴퓨터로 창작하는 가장 진보한 기술을 활용하는 법을 터득해보세요. 생성 AI를 접한 경험이 없더라도 괜찮습니다. 처음부터 따라 하며 차근차근 기술을 습득할 수 있게 친절히 안내합니다. 여러분에게 필요한 건 파이썬 코딩 경험, 그뿐입니다. 생성 모델의 기본 원리부터 파악한 후 파이썬과 케라스로 직접 코딩하며 생성 AI를 배워보세요. 

 

* 2판에서 달라진 점

1장은 다양한 생성 모델을 소개하고 이들의 연관성을 나타내는 분류 체계를 담았습니다.

2장은 그림을 개선했으며 주요 개념을 더 자세하게 설명합니다.

3장은 새로운 예제와 설명을 담았습니다.

4장은 조건부 GAN 구조를 설명합니다.

5장은 이미지를 위한 자기회귀 모델(예: PixelCNN)을 설명합니다.

6장은 완전히 새로운 장으로, RealNVP 모델을 설명합니다.

7장 역시 새로운 장이며, 랑주뱅 역학 및 대조 발산과 같은 기법에 초점을 맞춥니다.

8장은 오늘날 많은 최신 애플리케이션의 기반이 되는 잡음 제거 확산 모델을 위해 새로 작성한 장입니다.

9장은 초판의 마지막 장 내용을 확장한 것으로, 다양한 StyleGAN 모델 구조와 VQ-GAN에 관한 새로운 내용을 심층적으로 다룹니다.

10장은 트랜스포머 아키텍처를 자세히 살펴보는 새로운 장입니다.

11장은 초판의 LSTM 모델을 대신하여 최신 트랜스포머 아키텍처를 다룹니다.

12장은 그림과 설명을 업데이트했으며 이 접근 방식이 오늘날의 최신 강화 학습에 어떻게 영향을 미치는지 소개합니다.

13장은 새로운 장으로 DALL.E 2, Imagen, 스테이블 디퓨전, 플라밍고와 같은 인상적인 모델이 어떻게 작동하는지 자세히 설명합니다.

14장은 초판 이후 생성 AI의 놀라운 발전 현황을 반영하고 앞으로 나아갈 방향에 관한 더욱 완벽하고 상세한 시각을 제공합니다.

 

* 대상 독자

생성형 AI의 작동 방식을 이해하고, 직접 사용해보고 싶은 학부생 및 개발자

최신 딥러닝 기술에 관심 있는 머신러닝 엔지니어, 데이터 과학자 및 연구원

 

* 주요 내용

VAE로 사진 속 얼굴 표정 바꾸기

자체 데이터셋을 학습한 GAN으로 이미지 생성하기

확산 모델로 새로운 꽃 종류 만들기

텍스트 생성을 위한 자체 GPT 훈련하기

대규모 언어 모델인 챗GPT 훈련 방법 알아보기

StyleGAN2, ViT VQ-GAN과 같은 최신 아키텍처 조사하기

트랜스포머와 MuseGAN을 사용해 다성 음악 작곡하기

월드 모델이 강화 학습 과제를 해결하는 방법 이해하기

●    DALL.E 2, Imagen, 스테이블 디퓨전과 같은 멀티모달 모델 알아보기

독자리뷰

오탈자 보기

결제하기
• 문화비 소득공제 가능
• 배송료 : 2,000원배송료란?

배송료 안내

  • 20,000원 이상 구매시 도서 배송 무료
  • 브론즈, 실버, 골드회원 무료배송
닫기

리뷰쓰기

닫기
* 상품명 :
만들면서 배우는 생성 AI
* 제목 :
* 별점평가
1 2 3 4 5
* 내용 :

* 리뷰 작성시 유의사항

글이나 이미지/사진 저작권 등 다른 사람의 권리를 침해하거나 명예를 훼손하는 게시물은 이용약관 및 관련법률에 의해 제재를 받을 수 있습니다.

1. 특히 뉴스/언론사 기사를 전문 또는 부분적으로 '허락없이' 갖고 와서는 안됩니다 (출처를 밝히는 경우에도 안됨).
2. 저작권자의 허락을 받지 않은 콘텐츠의 무단 사용은 저작권자의 권리를 침해하는 행위로, 이에 대한 법적 책임을 지게 될 수 있습니다.

오탈자 등록

닫기
* 도서명 :
만들면서 배우는 생성 AI
* 구분 :
* 상품 버전
종이책 PDF ePub
* 페이지 :
* 위치정보 :
* 내용 :

도서 인증

닫기
도서명*
만들면서 배우는 생성 AI
구입처*
구입일*
부가기호*
부가기호 안내

* 온라인 또는 오프라인 서점에서 구입한 도서를 인증하면 마일리지 500점을 드립니다.

* 도서인증은 일 3권, 월 10권, 년 50권으로 제한되며 절판도서, eBook 등 일부 도서는 인증이 제한됩니다.

* 구입하지 않고, 허위로 도서 인증을 한 것으로 판단되면 웹사이트 이용이 제한될 수 있습니다.

닫기

해당 상품을 장바구니에 담았습니다.이미 장바구니에 추가된 상품입니다.
장바구니로 이동하시겠습니까?